Hilditchs Algorithm Based Tamil Character Recognition

نویسنده

  • V. Karthikeyan
چکیده

Character identification plays a vital role in the contemporary world of Image processing. It can solve many composite problems and makes human’s work easier. An instance is Handwritten Character detection. Handwritten recognition is not a novel expertise, but it has not gained community notice until Now. The eventual aim of designing Handwritten Character recognition structure with an accurateness rate of 100% is pretty illusionary. Tamil Handwritten Character recognition system uses the Neural Networks to distinguish them. Neural Network and structural characteristics are used to instruct and recognize written characters. After training and testing the exactness rate reached 99%. This correctness rate is extremely high. In this paper we are exploring image processing through the Hilditch algorithm foundation and structural characteristics of a character in the image. And we recognized some character of the Tamil language, and we are trying to identify all the character of Tamil In our future works. KeywordsCharacter Identification, Hilditch Algorithm, Hand written Recognition, Contemporary

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Character Recognition using RCS with Neural Network

Hand written Tamil Character recognition refers to the process of conversion of handwritten Tamil character into Unicode Tamil character. The scanned image is segmented into paragraphs using spatial space detection technique, paragraphs into lines using vertical histogram, lines into words using horizontal histogram, and words into character image glyphs using horizontal histogram. The extracte...

متن کامل

Feed Forward Back Propagation Neural Network based Character Recognition System for Tamil Palm Leaf Manuscripts

Optical character recognition refers to the process of translating segmented hand-written images or typewritten images into machine editable text. In this study, we propose a Tamil palm leaf manuscripts character recognition system using FFBNN technology. First the palm leaf manuscripts characters are segmented by exploiting the sliding window and adaptive histogram calculation. Afterwards, the...

متن کامل

Offline Tamil Handwritten Character Recognition using Zone based Hybrid Feature Extraction Technique

Character recognition is the most important research area in today’s world. Many researchers have focused on recognizing handwritten digits, numerals and characters in so many languages. To the best of our knowledge, little work has been done in the area of Tamil handwritten character recognition but they did not achieve better accuracy. Feature extraction is the important phase of character re...

متن کامل

Recognition of Ancient Tamil Handwritten Characters in Palm Manuscripts Using Genetic Algorithm

The objective of this research is to develop computer software that can recognize the Ancient Tamil handwritten characters by using the genetic algorithm technique (RATHCPM). The system consists of 5 main modules, which are: 1) image acquisition module, 2) image preprocessing module, 3) feature extraction module, 4) character recognition module, and 5) display result module. Each module has the...

متن کامل

An Improved Handwritten Tamil Character Recognition System using Octal Graph

Problem Statement: Handwriting recognition has attracted voluminous research in recent times. The segmentation and recognition of the characters from handwritten scripts incorporates considerable overhead. Almost all the existing handwritten character recognition techniques use neural network approach, which requires lot of preprocessing and hence accomplishing these problems using neural netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.6740  شماره 

صفحات  -

تاریخ انتشار 2013